Translate

30 novembre 2020

Utiliser un logiciel tiers sur un Web-Sdr sous Windows

Même si certains web-Sdr décodent directement  quelques modes numériques, Il est parfaitement possible d' utiliser des logiciels externes pour décoder par exemple l'Aprs, la Sstv, le Rtty ou tout autre mode.

Pour cela, il nous faut détourner le flux audio pour le rediriger vers le logiciel que l'on désire utiliser.

L'application qui permet cela est AUDIO VIRTUEL CABLE



Que vous trouverez ICI.

 Virtual Cable va détourner le flux audio et vous permettre de le rediriger vers le logiciel que vous désirez utiliser.

Une fois téléchargé le fichier VBCABLE_Driver_Pack43.zip.

Le décompacter 

Procéder à l’installation  en cliquant sur le fichier Setup correspondant à votre OS en mode administrateur.

Clic droit sur le fichier correspondant: Exécuter en tant qu'administrateur.

- VBCABLE_Setup.exe pour un OS 32 bit 

- VBCABLE_Setup_x64.exe pour un OS  64 bit


 

Attendre la fin de l'installation qui peut durer quelques secondes. 

Il est recommandé de redémarrer son système après l'installation.



Après redémarrage, vous devriez trouvé un nouveau périphérique de sortie audio.

Afficher le panneau de contrôle du son Panneau de configuration et sélectionner Sons.

Sélectionner le périphérique CABLE Input dans l'onglet Lecture et cliquer sur le bouton Par défaut, la coche verte apparaît.


 

 Afin d’entendre le son dans les hauts parleurs, cliquer sur Enregistrement


 

Sélectionner Cable Output ensuite sur Propriétés afin d’afficher l’écran ci-dessous.

 


 De là, cocher la case Ecouter ce périphérique et choisissez le périphérique approprié dans la liste déroulante :

 Et voila!

Pour utiliser un logiciel tiers, il faudra sélectionner comme source Audio Cable Input.

ça fonctionne très bien avec MMSSTV, MMRTTY ou SarTrack.

Il vous faudra aussi AGWPE pour décoder l'Aprs.

Aucune excuse pour ne pas recevoir les images SSTV de l'ISS sur 145,800 Mhz le 1er et le 2 décembre.

 

27 novembre 2020

Contact radioamateur du 04/12/2020

 Un contact Radioamateur aura lieu le Vendredi 04/12/20 vers 12H25 UTC (13H25 heure de Paris).
Il aura lieu entre un astronaute de l’ISS et la Scuola Secondaria di I grado “Anna Frank”, Pistoia, Italie.

Le contact aura lieu en télébridge sur 145.800 MHz (+/-3 KHz de doppler) en FM étroite.
Il sera conduit par une station Italienne (IK1SLD) et donc sera audible depuis la France.

Le contact sera conduit en Anglais.

 

Il est à noter qu’un espace est prévu pour vos commentaires et rapports d’écoute sur le forum de l’AMSAT francophone : ici
Bonne écoute 

22 novembre 2020

Emission SSTV planifiée le 1er & 2 décembre 2020


 Un événement SSTV de l’Institut de l’aviation de Moscou (MAI-75) est programmé selon l’agenda suivant :

  •  mardi 1er décembre  de 12h30 UTC  à 18h25 UTC
  •  mercredi 2 décembre de 11h50 UTC  à 18h25 UTC.

La liaison descendante des signaux SSTV  est  145,800 MHz +/- décalage Doppler.

Le mode de transmission devrait être PD 120.

Les images reçues de qualité raisonnable peuvent être publiées dans la galerie ARISS SSTV à l’ adresse https://www.spaceflightsoftware.com/ARISS_SSTV/ .

09 novembre 2020

Introduction aux SDR : LA TRANSFORMEE DE FOURIER

 Transformée de Fourier


Mathématiquement, la «transformée» que nous utilisons pour passer du domaine temporel au domaine fréquentiel et inversement s'appelle la transformée de Fourier. Elle est défini comme suit:


Pour un signal x (t), nous pouvons obtenir la version du domaine fréquentiel, X (f), en utilisant cette formule. Nous allons représenter la version dans le domaine temporel d'une fonction avec x (t) ou y (t), et la version dans le domaine fréquentiel correspondante avec X (f) et Y (f). Notez le «t» pour le temps et «f» pour la fréquence. Le «j» est simplement le nombre imaginaire. Vous l'avez peut-être vu comme un «i» en classe de mathématiques au lycée. Nous utilisons «j» en ingénierie et en informatique parce que «i» fait souvent référence au courant, et dans la programmation, il est souvent utilisé comme un itérateur.

Revenir dans le domaine temporel à partir de la fréquence est presque le même, mis à part un facteur d'échelle et un signe négatif:


Notez que de nombreux manuels et autres ressources utilisent w à la place du 2 \ pi f. w est la fréquence angulaire en radians, tandis que f est en Hz. Tout ce que tu dois savoir c'est que


Même si cela ajoute un terme 2 \ pi à de nombreuses équations, il est plus facile de s'en tenir à la fréquence en Hz. En fin de compte, vous travaillerez avec Hz dans votre application SDR.

L'équation ci-dessus pour la transformée de Fourier est la forme continue, que vous ne verrez que dans les problèmes de mathématiques. La forme discrète est beaucoup plus proche de ce qui est implémenté dans le code:



 

Notez que la principale différence est que nous avons remplacé l'intégrale par une sommation. L'indice k va de 0 à N-1.

Ce n’est pas grave si aucune de ces équations ne vous dit grand-chose. Nous n'avons en fait pas besoin de les utiliser directement pour faire des trucs sympas avec DSP et SDR!

Propriétés temps-fréquence


Plus tôt, nous avons examiné des exemples de la façon dont les signaux apparaissent dans le domaine temporel et le domaine fréquentiel. Nous allons maintenant couvrir cinq «propriétés de Fourier» importantes. Ce sont des propriétés qui nous indiquent si nous faisons ____ à notre signal de domaine temporel, alors ____ arrive à notre signal de domaine de fréquence. Cela nous donnera un aperçu important du type de traitement numérique du signal (DSP) que nous effectuerons sur les signaux du domaine temporel dans la pratique.

    Propriété de linéarité:



Cette propriété est probablement la plus simple à comprendre. Si nous ajoutons deux signaux dans le temps, alors la version du domaine fréquentiel sera également les deux signaux du domaine fréquentiel additionnés. Cela nous dit également que si nous multiplions l'un ou l'autre par un facteur d'échelle, le domaine de fréquence sera également mis à l'échelle du même montant. L'utilité de cette propriété deviendra plus évidente lorsque nous additionnerons plusieurs signaux.

    Propriété de décalage de fréquence:



Le terme à gauche de x (t) est ce que nous appelons une «sinusoïde complexe» ou «exponentielle complexe». Pour l'instant, tout ce que nous devons savoir, c'est qu'il s'agit essentiellement d'une onde sinusoïdale à la fréquence f_0. Cette propriété nous dit que si nous prenons un signal x (t) et le multiplions par une onde sinusoïdale, alors dans le domaine fréquentiel, nous obtenons X (f) sauf décalé d'une certaine fréquence, f_0. Ce décalage de fréquence peut être plus facile à visualiser:



Le décalage de fréquence fait partie intégrante du DSP car nous voudrons décaler les signaux de haut en bas en fréquence pour de nombreuses raisons. Cette propriété nous indique comment faire cela (multiplier par une onde sinusoïdale). Voici une autre façon de visualiser cette propriété:

    Propriété de mise à l'échelle dans le temps:



Sur le côté gauche de l'équation, nous pouvons voir que nous mettons à l'échelle notre signal x (t) dans le domaine temporel. Voici un exemple de signal mis à l'échelle dans le temps, puis ce qui arrive aux versions du domaine fréquentiel de chacune.