Transformée de Fourier
Mathématiquement, la «transformée» que nous utilisons pour passer du domaine temporel au domaine fréquentiel et inversement s'appelle la transformée de Fourier. Elle est défini comme suit:

Pour un signal x (t), nous pouvons obtenir la version du domaine fréquentiel, X (f), en utilisant cette formule. Nous allons représenter la version dans le domaine temporel d'une fonction avec x (t) ou y (t), et la version dans le domaine fréquentiel correspondante avec X (f) et Y (f). Notez le «t» pour le temps et «f» pour la fréquence. Le «j» est simplement le nombre imaginaire. Vous l'avez peut-être vu comme un «i» en classe de mathématiques au lycée. Nous utilisons «j» en ingénierie et en informatique parce que «i» fait souvent référence au courant, et dans la programmation, il est souvent utilisé comme un itérateur.
Revenir dans le domaine temporel à partir de la fréquence est presque le même, mis à part un facteur d'échelle et un signe négatif:

Notez que de nombreux manuels et autres ressources utilisent w à la place du 2 \ pi f. w est la fréquence angulaire en radians, tandis que f est en Hz. Tout ce que tu dois savoir c'est que

Même si cela ajoute un terme 2 \ pi à de nombreuses équations, il est plus facile de s'en tenir à la fréquence en Hz. En fin de compte, vous travaillerez avec Hz dans votre application SDR.
L'équation ci-dessus pour la transformée de Fourier est la forme continue, que vous ne verrez que dans les problèmes de mathématiques. La forme discrète est beaucoup plus proche de ce qui est implémenté dans le code:
Notez que la principale différence est que nous avons remplacé l'intégrale par une sommation. L'indice k va de 0 à N-1.
Ce n’est pas grave si aucune de ces équations ne vous dit grand-chose. Nous n'avons en fait pas besoin de les utiliser directement pour faire des trucs sympas avec DSP et SDR!
Propriétés temps-fréquence
Plus tôt, nous avons examiné des exemples de la façon dont les signaux apparaissent dans le domaine temporel et le domaine fréquentiel. Nous allons maintenant couvrir cinq «propriétés de Fourier» importantes. Ce sont des propriétés qui nous indiquent si nous faisons ____ à notre signal de domaine temporel, alors ____ arrive à notre signal de domaine de fréquence. Cela nous donnera un aperçu important du type de traitement numérique du signal (DSP) que nous effectuerons sur les signaux du domaine temporel dans la pratique.
Propriété de linéarité:

Cette propriété est probablement la plus simple à comprendre. Si nous ajoutons deux signaux dans le temps, alors la version du domaine fréquentiel sera également les deux signaux du domaine fréquentiel additionnés. Cela nous dit également que si nous multiplions l'un ou l'autre par un facteur d'échelle, le domaine de fréquence sera également mis à l'échelle du même montant. L'utilité de cette propriété deviendra plus évidente lorsque nous additionnerons plusieurs signaux.
Propriété de décalage de fréquence:

Le terme à gauche de x (t) est ce que nous appelons une «sinusoïde complexe» ou «exponentielle complexe». Pour l'instant, tout ce que nous devons savoir, c'est qu'il s'agit essentiellement d'une onde sinusoïdale à la fréquence f_0. Cette propriété nous dit que si nous prenons un signal x (t) et le multiplions par une onde sinusoïdale, alors dans le domaine fréquentiel, nous obtenons X (f) sauf décalé d'une certaine fréquence, f_0. Ce décalage de fréquence peut être plus facile à visualiser:

Le décalage de fréquence fait partie intégrante du DSP car nous voudrons décaler les signaux de haut en bas en fréquence pour de nombreuses raisons. Cette propriété nous indique comment faire cela (multiplier par une onde sinusoïdale). Voici une autre façon de visualiser cette propriété:

Propriété de mise à l'échelle dans le temps:

Sur le côté gauche de l'équation, nous pouvons voir que nous mettons à l'échelle notre signal x (t) dans le domaine temporel. Voici un exemple de signal mis à l'échelle dans le temps, puis ce qui arrive aux versions du domaine fréquentiel de chacune.
